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A B S T R A C T

Multi-span question answering has gained prominence as it aligns more closely with real-world
user requirements compared to single-span question answering. The utilization of pretrained
language models has shown promise in improving multi-span question answering, particularly
for factoid questions that necessitate entity-based answers. However, existing methods tend to
overlook critical information regarding answer span boundaries, resulting in limited accuracy
when generating descriptive answers. To address this limitation, we propose TOAST, a novel
joint learning framework specialized in token-based neighboring transitions that capture answer
span boundaries through adjacent word relations. Our approach extracts high-quality multi-
span answers and is general-purpose, applicable to both alphabet languages like English and
logographic languages like Chinese. Furthermore, we introduce CLEAN, a comprehensive open-
domain Chinese multi-span question answering dataset, which includes a substantial number of
descriptive questions. Extensive experiments demonstrate the superior performance of TOAST
over previous top-performing QA models in terms of both EM F1 and overlapped F1 scores.
Specifically, the TOAST models, leveraging BERT𝑏𝑎𝑠𝑒 and RoBERTa𝑏𝑎𝑠𝑒, achieve substantial
improvements in EM F1 scores, with increments of 3.03/2.13, 4.82/3.73, and 16.26/11.53,
across three publicly available datasets, respectively.

. Introduction

Extractive question answering, also commonly referred as the task of reading comprehension, which aims to answer a user’s
uestion by finding short text segments (i.e., spans) from the given context, has been actively studied and achieved rapid progress
n recent years. Benefiting from the sophisticated industrial search engines and the vast amount of text collections on the web,
igh-quality contexts relevant to the user questions can be effectively retrieved to construct the datasets. As a result, the answers
irectly drawn from the high-quality contexts are expressive enough. Hence, existing datasets and models (Dasigi, Liu, Marasovic,
mith, & Gardner, 2019; Lee, Kim, & Kang, 2023; Li, Tomko, Vasardani, & Baldwin, 2022; Liu, Mao, Geng, & Cambria, 2023), cast
eading comprehension as an extractive task that is easy to learn.

Most previous work (Rajpurkar, Jia, & Liang, 2018; Rajpurkar, Zhang, Lopyrev, & Liang, 2016; Yang et al., 2018; Zaheer et al.,
020) restricts the answer extracted from the context to a single text span which can only satisfy limited real-world open-domain
uestions. For example, as shown in Table 1 (the left example), the complete answer to a question could consist of a series of
on-contiguous spans, or even the question itself could have multiple intents, where the answer to each intent is composed of
ne or more spans drawn from the input. Hence, the models of multi-span question answering have significant utility to users.
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Table 1
Examples of questions and answers.

Recently, Segal, Efrat, Shoham, Globerson, and Berant (2020) cast the multi-span extraction as a sequence tagging task, predicting
whether each token is part of an answer. Li et al. (2022) captured the global information by integrating two sub-tasks of predicting
the number of spans to extract and the answer structure annotated in their proposed dataset. Benefiting from nowadays pretrained
models (e.g., BERT Kenton & Toutanova, 2019, RoBERTa Liu et al., 2019), the above neural approaches have achieved promising
performance on answer span extraction, especially for factoid questions where the expected answers are entities (e.g., Person and
Location).

However, existing systems fail to carefully consider span boundaries according to the information need of the question, and
thus have very limited capabilities of precisely drawing a description answer, for example, the answer spans of ‘‘ (diet and
are)’’ and ‘‘ (take them out for some exercises)’’ as shown in Table 1, from the input. Moreover, in

the construction of existing datasets, user question candidates are constrained by the organization way of the document collection
where the relevant contexts are retrieved from. For example, Wikipedia, the most widely used document collection for context
retrieval, organizes articles using entities. The problem is that a semantic gap exists between the real context of what users want to
ask and the entity-based articles (i.e. single Wiki page). Backed by the document collection of Wikipedia, existing datasets include
most types of the factoid questions, whereas they exclude many questions that cannot be answered from a single article of an entity.

Following the above observations, we in this paper propose a novel approach to explicitly model the implicit neighboring
transitions via the adjacent word (or token) relations, which are both semantically and syntactically informative for span boundaries
identification. This approach captures the intuition that the span boundary is produced in-between adjacent words. We indicate
neighboring transitions in-between as five types of relations. Then, we jointly learn the sequence tagging task together with the
adjacent word relation classification task evolved from the span boundary identification, considering whether each token is part
of an answer and which span each token belongs to accordingly. With the awareness of adjacent word relations, we incorporate
the information of span boundaries in a multi-task learning manner. Furthermore, in order to ameliorate the observed limitation
of previous datasets, which including more real-world open-domain questions, we create a new dataset (in Chinese) in a more
natural manner, extracting question–context pairs from a large-scale knowledge Q&A sharing platform (i.e., BaiduZhidao1) instead
of Wikipedia.

In summary, the main contributions in this paper are as follows:

• We create a new reading comprehension dataset named CLEAN2 that consists of both single-span and multi-span answers,
covering a wide range of open-domain question topics. CLEAN overcomes the constraints imposed by previous datasets by
incorporating carefully crafted long answers as contexts, effectively bridging the semantic gap with the insights provided by
respondents.

• We propose a novel approach for multi-span reading comprehension, where we explore implicit neighboring transitions using
adjacent word relations, effectively capturing both semantic and syntactic information pertaining to the boundaries of answer
spans.

• We demonstrate that incorporating the span boundary information via the awareness of adjacent word relations improves
strong baselines on three multi-span question answering datasets (both English and Chinese).

2. Preliminary

In this section, we present the problem statement and then introduce the datasets.

1 https://zhidao.baidu.com/.
2 We intend to make CLEAN 1.0 dataset publicly avaiable at http://zhiyiluo.site/misc/clean_v1.0_sample.json for future work in this research area.
2
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2.1. Problem statement

We formulate the problem of multi-span question answering as a task of multi-span extraction on the basis of the reading
omprehension (RC) datasets. The objective of the task is to extract one or more answer spans based on the input question and
ontext.

Formally, given an input question represented as a sequence of words 𝑞 = (𝑞1, 𝑞2,… , 𝑞𝑛) ∈  , and an input context 𝑐, associating
to 𝑞, which is also represented as a sequence of words 𝑐 = (𝑐1, 𝑐2,… , 𝑐𝑚) ∈  , where  refers to the vocabulary, the objective of the
system is to extract one or more spans as the answer 𝑎, say 𝑙 spans, 𝑎 = [𝑎1, 𝑎2,… , 𝑎𝑙] from the context 𝑐, where the 𝑖th span 𝑎𝑖 is
a sequence of words 𝑎𝑖 = (𝑐𝑖𝑠 , 𝑐𝑖𝑠+1,… , 𝑐𝑖𝑒 ), ranging from the start position 𝑖𝑠 to its end position 𝑖𝑒. Note that the extracted answer
spans should be neither duplicated nor overlap with each other. That means, for any 𝑖, 𝑗 where 𝑖 < 𝑗, 𝑖𝑒 < 𝑗𝑠 holds.

Evaluation are exact match and partial match with any of the reference answer strings after minor normalization such as
lowercasing, following evaluation scripts from Li et al. (2022).

2.2. Datasets

In this work, we conduct the experiments on three RC datasets, ranging from two English datasets and one proposed Chinese
dataset for multi-span question answering.

The latest dataset, MultiSpanQA, focus on multi-span questions, which is derived from Natural Question (NQ) (Kwiatkowski
et al., 2019), a large-scale open domain QA dataset. It also has an expanded variant by introducing single-span and unanswerable
questions, namely MultiSpanQA (expand).

In MultiSpanQA and MultiSpanQA (expand), the questions are derived from real queries issued to the Google search engine. Each
question is paired with a context extracted from a retrieved Wikipedia page. However, it is important to acknowledge that Wikipedia
pages are structured around entities, which may not fully align with the intentions of real-world open-domain questions, especially
those that are non-factoid in nature. This entity-centric organization of Wikipedia pages introduces a semantic gap between the
content and the intended meaning of real-world open-domain questions. As a result, existing RC datasets like MultiSpanQA are
limited to questions that primarily revolve around entities, allowing for the extraction of concise spans from a single Wikipedia
page as answers. Moreover, there is a noticeable scarcity of publicly available open-domain multi-span QA datasets in the Chinese
language. Although recently proposed CMQA (Ju et al., 2022) is one such dataset, it primarily focuses on a new task of conditional
question answering, which may not directly address the requirements of traditional question answering scenarios.

To ameliorate these limitations, we create a more realistic and challenging dataset, utilizing a large-scale Chinese online
knowledge Q&A sharing platform (i.e. BaiduZhidao) which is full of open-domain questions with crafted long answers from public
users. Over the course of two decades of crowd-sourcing efforts, the shared questions have covered a broad range of subjects,
including people, celestial bodies, flora and fauna, landmarks, etc. Firstly, we conduct a random crawl of one million questions
across 29 popular subjects in the open domain. Next, we employ two key strategies to increase the proportion of multi-span answers
relative to single-span answers: (1) selectively choosing questions that contain keywords such as (e.g. how) or (e.g.
what/which ones), as these types of questions typically require multipart descriptions; and (2) translating all the crawled questions
into English and specifically targeting questions featuring plural nouns. Note that, a question may have a number of long answers
created by different users, and we only consider those with more than 3 likes as potential candidates. Then, our annotators are
educated to pick up high-quality contexts from the candidate answers for each question and identify one or more answer spans
within the context that can effectively answer the given question. Finally, we obtain a diverse collection of multi-span answers in
various formats.

In our proposed Chinese muLti-span quEstion ANswering (or CLEAN) dataset, the context consists of meticulously constructed
ong answers that effectively bridge the semantic gap with the insights provided by respondents. This approach ensures that the
uestion intents are appropriately addressed and breaks the constraints imposed by previous datasets in terms of question selection.
able 1 (left) presents a specific example from the CLEAN dataset, where the question is obtained from BaiduZhidao, and the context

s selected from the original long answers associated with that question. To make our dataset more general, as well as considering
he versatility of questions, unlike MultiSpanQA, we only annotate the span of answer without the structure of the answer.

. Our framework

In this section, we first introduce a basic neural framework for multi-span question answering based on pretrained language
odels, which involves casting multi-span extraction as a sequence tagging task. Intuitively, answer span boundaries often align
ith semantic and syntactic shifts within contexts, the identification of which is more subtle in multi-span extraction (see the
xample in Table 2). We then propose a novel joint framework called TOken-bASed Transition-aware (TOAST) for multi-span

question answering. TOAST effectively captures these shifts through token-based transition awareness and incorporates boundary
knowledge into token representations to enhance tagging predictions.

The architecture of TOAST is depicted in Fig. 1. The Transition Identification module demonstrates how span boundary
identification can be transferred to a token-based transition classification task, while the Transition Incorporation module explains
how we incorporate semantic and syntactic shifts in adjacent word relations to improve the informativeness of the extraction. In
addition to the sequence tagging task (Task 1 in Fig. 1), TOAST also includes an auxiliary task of transition classification (Task 2 in
Fig. 1). We therefore present a multi-task learning strategy for TOAST. Finally, we present the joint decoding step, which leverages
3

outputs from multiple tasks to improve performance.
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Fig. 1. An illustration of TOAST framework architecture.

3.1. A BERT-based sequence tagging model

Extracting a variable number of spans from an input text can be commonly cast as a sequence tagging problem, which is suitable
for answer extraction of multi-span questions. Following the observation of Li et al. (2022), we adopt the BIO tagging scheme to
mark answer spans in the context where words are tagged as either part of the answer (Begin, Inside) or not (Other). Formally, BIO
tagging scheme is represented by a tag set  ={ B, I, O}.

3.1.1. Encoder
First, we encode the question and context with a pretrained language model, such as BERT and RoBERTa. Generally, the encoder

takes in the input text and encodes it into a series of contextualized hidden representations. Specifically, the BERT-style encoder
takes in a [𝐶𝐿𝑆] token, followed by the concatenation of a question 𝑞 = (𝑞1, 𝑞2,… , 𝑞𝑛) and its context 𝑐 = (𝑐1, 𝑐2,… , 𝑐𝑚) with [𝑆𝐸𝑃 ]
token, as the input sequence ([𝐶𝐿𝑆], 𝑞1, 𝑞2,… , 𝑞𝑛, [𝑆𝐸𝑃 ], 𝑐1, 𝑐2,… , 𝑐𝑚). We use 𝑥 = (𝑥1, 𝑥2,… , 𝑥𝐿) as a more concise notation of the
above sequence, where 𝐿 refers to the length of the input, that 𝐿 = 𝑛+𝑚+2 when ignoring padding tokens. Then we send it through
neural layers of the encoder to finally obtain hidden representations 𝐇 =

[

𝐡1,𝐡2,… ,𝐡𝐿
]

∈ R𝐿×𝑑ℎ , where 𝑑ℎ denotes the hidden-layer
size, and 𝐡𝑖 represents the hidden representation of the 𝑖th input token. In the next step, output representations are sent into an FFN
(Feed Forward Neural Network) layer, and computed the output logits as 𝐎𝑡𝑎𝑔 = 𝐹𝐹𝑁(𝐇) ∈ R𝐿×| | for token-level tag prediction,
where  denotes the tag set we described above.

3.1.2. Training & Decoding
The task of token-level tag prediction that aims to assign a specific tag 𝑡𝑖 from the set  to each token 𝑥𝑖 in the input sequence

𝑥, is inherently a classification problem. In this regard, we employ the widely adopted cross-entropy loss, which aggregates the
negative logarithm of the predicted probability for the correct tag across all tokens in the training set. This loss penalizes the model
heavily for confident yet incorrect predictions, prompting the model to adjust its parameters and minimize the loss. To optimize
the answer span tagging model, we compute the cross-entropy loss, say 𝐿𝑡𝑎𝑔 , as follows:

𝐿𝑡𝑎𝑔 = −
∑

𝑥∈𝐷

𝐿(𝑥)
∑

𝑖=1
log(𝑝(𝑡𝑖|𝑥𝑖)), (1)

where 𝐷 is the training set, and 𝐿(𝑥) is the input length of 𝑥. At the decoding step, we predict the tag 𝑡𝑖 for token 𝑥𝑖 as follows:

𝑡𝑖 = argmax
𝑡∈

𝑝(𝑡|𝑥𝑖). (2)

Then, we extract a successive sequence of B- and I-tagged tokens as an answer span. For example, the input sequence of context
‘‘a b c d e f’’ tagged as ‘‘O B I O B O’’ can be decoded into two answer spans of ‘‘b c’’ and ‘‘e’’ respectively. Note that we do a
post-processing step to tag ‘‘O’’ for all input tokens except for those from the context, which means we only draw answer spans
from the input context.
4



Information Processing and Management 61 (2024) 103678Z. Luo et al.

i
b
t
m
t

3

T
t
i
a
a
i
i
O
t
b
t
k

3

o
t
m

w
[

w
𝑥
p

Table 2
The definition of adjacent word relations.

3.2. Token-based transition awareness

One limitation of the baseline framework is that it often breaks a complete answer span into many meaningless splits, which
s especially serious for those description answer spans. This reflects that the model lacks specific knowledge to indicate span
oundaries accurately. A context or long answer for a multi-span question contains a variable number of answer spans corresponding
o one or more user intents. Therefore, semantic meanings and syntactic patterns transit quickly across words (or tokens), the
inimal text unit. Following the above observation, we propose a novel approach to capture such token-based neighboring

ransitions, then come up with an auxiliary task and joint learning strategy to incorporate such knowledge into our framework.

.2.1. Transition identification
In our approach, neighboring transitions are represented as five types of relations in-between adjacent words by exploring whether

a span transition happens across the adjacent words. More specifically, for each adjacent word pair in the input, say 𝑥𝑖−1 and 𝑥𝑖, 8
possible tagging cases exist under the BIO tagging scheme, denoted as (𝑡𝑖−1, 𝑡𝑖), where 𝑡𝑖 ∈  is the ground truth tag of 𝑥𝑖. As shown in

able 2, we summarize five relations in-between adjacent words (𝑥𝑖−1, 𝑥𝑖) according to their tags (𝑡𝑖−1, 𝑡𝑖), each of which corresponds
o a type of span transition. For example, an inter-span transition (defined as Inter relation) happens when an adjacent word pair
s tagged as (B, B) or (I, B), which means 𝑥𝑖−1 and 𝑥𝑖 are both part of the answer while belong to two consecutive but different
nswer spans. The relation of NONE indicates that there is no span transition in-between 𝑥𝑖−1 and 𝑥𝑖. Note that 𝑥𝑖 could be either
context word (e.g., 𝑐𝑖) or a question word (e.g., 𝑞𝑖) as well as a special token (e.g., [CLS] and [SEP]). The NONE relation holds

f any word in (𝑥𝑖−1, 𝑥𝑖) is a non-context word or both 𝑥𝑖−1 and 𝑥𝑖 are context words, but neither is part of the answer. To further
llustrate the types of relations, we provide an example from the MSQA dataset in Table 2. The question ‘‘When are the Winter
lympics and where are they’’ has two intents: querying the time and location of the Winter Olympics. The Inter relation between

he terms ‘‘2018’’ and ‘‘in’’ indicates a semantic transition from time to location. By exploring every neighboring transition modeled
y the defined set of relations between adjacent words, our approach effectively captures semantically and syntactically span-based
ransitions. Next, we present how to encode span-transition knowledge via adjacent word relations in Table 2 and incorporate such
nowledge into our framework.

.2.2. Transition incorporation
After transition identification, each adjacent word pair (𝑥𝑖−1, 𝑥𝑖) has been associated with a relation 𝑟𝑖 ∈ , where  is the set

f adjacent word relations. As defined in Table 2,  = {𝑁𝑂𝑁𝐸, 𝐼𝑛, 𝐼𝑛𝑡𝑟𝑎, 𝐼𝑛𝑡𝑒𝑟, 𝑂𝑢𝑡}. Then, we equip our model with token-based
ransition knowledge though relational transformations. More specifically, for each (𝑥𝑖−1, 𝑟𝑖, 𝑥𝑖) triple, that 𝑟𝑖 associates to a relational
atrix 𝐖𝑟𝑖 ∈ R𝑑ℎ×2𝑑ℎ , we compute the enhanced contextualized representation of 𝑥𝑖 with the awareness of span transitions as follows:

𝐮𝐢 = 𝐖𝑟𝑖
[

𝐡𝑖−1;𝐡𝑖
]

, (3)

here 𝐡𝐢 is the output representation of token 𝑥𝑖 from the encoder described in Section 3.1, 𝐮𝐢 is its enhanced representation, and
; ] is vector concatenation across row. Then, we send the enhanced representations 𝐔 = [𝐮1,𝐮2,… ,𝐮𝐿] ∈ R𝐿×𝑑ℎ into a FNN layer

and compute the output logits as:

𝐎̃𝑡𝑎𝑔 = 𝐹𝑁𝑁(𝐔) ∈ R𝐿×| |, (4)

here [, ] is vector concatenation across column, and the implicit multiplication is matrix multiplication. We make up a fake token
0 as the prior word of 𝑥1, that (𝑥0, 𝑁𝑂𝑁𝐸, 𝑥1) holds, and 𝐡0 is set to be a vector full of zeros. Hence, each input token 𝑥𝑖 can be
aired with its prior token 𝑥 as an adjacent word pair indicating with a relation 𝑟 , where 𝑖 ranges from 1 to 𝐿.
5
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We argue that the awareness of span-based transition which intuitively modeled by adjacent word relations bring extra
nformation for span identification, thus facilitate the multi-span extraction task. The proposed incorporation method is natural
nd straightforward, and we will demonstrate its effectiveness in our experiments (See Section 4).

.3. Multi-task learning

To aware the knowledge of span-based transition, we need to construct a series of relations (𝑟1, 𝑟2,… , 𝑟𝐿) from the input sequence
(𝑥1, 𝑥2,… , 𝑥𝐿), where 𝑟𝑖 indicates the adjacent word relation in-between the adjacent word pair (𝑥𝑖−1, 𝑥𝑖). For the training data,
ach input token 𝑥𝑖 is annotated with a ground truth tag 𝑡𝑖, thus we can draw relation 𝑟𝑖 from the tag pair (𝑡𝑖−1, 𝑡𝑖) according to

Table 2. While it is not true for the test data, we cannot harvest accurate adjacent word relations directly. Thus, on the basis
of previous sequence tagging model, we build a multi-task learning framework by introducing an auxiliary task of token-based
transition classification. This relation classifier of the auxiliary task shares the BERT-style encoder with previous tagging model
with a new, unshared FNN layer upon. The output logits of relation classifier are computed as:

𝐎𝑟𝑒𝑙 = 𝐹𝑁𝑁([𝐇𝑝𝑟𝑒𝑣;𝐇]) ∈ R𝐿×||, (5)

where 𝐇𝑝𝑟𝑒𝑣 = [𝐡0,𝐡1,… ,𝐡𝐿−1] ∈ R𝐿×𝑑ℎ denotes representations of the prior token sequence (𝑥0, 𝑥1,… , 𝑥𝐿−1) with respect to the
input sequence (𝑥1, 𝑥2,… , 𝑥𝐿). For the auxiliary task, we use cross-entropy loss to train the relation classifier, which reflects the
wareness of span-based transition. More specifically, the above loss 𝐿𝑟𝑒𝑙 is computed as:

𝐿𝑟𝑒𝑙 = −
∑

𝑥∈𝐷

𝐿(𝑥)
∑

𝑖=1
log(𝑝(𝑟𝑖|𝑥𝑖−1, 𝑥𝑖)), (6)

where 𝐷 refers to the training data, and 𝐿(𝑥) denotes the length of input sequence 𝑥. To jointly learn shared parameters in the
encoder as well as leverage the representation of token-based transition knowledge, we use a combinartorial loss as follows:

𝐿 = 𝐿𝑡𝑎𝑔 + 𝐿𝑟𝑒𝑙 . (7)

In summary, the strategy of our multi-task learning framework is that, given an input sequence, we first predict the token-based
transitions in each position, then leverage the predicted transitions to calculate the enhanced token representation following Eq. (4),
finally optimize the proposed combinartorial loss in Eq. (7) to update joint model parameters together.

3.4. Decoding

Next, we present two decoding strategies for our joint framework. As described above, we jointly train two tasks (i. e, sequence
tagging and transition classification) in our framework, then predict the adjacent token-based transitions and the token tags
respectively. Intuitively, we can decode the answer spans from tags predicted by the enhanced sequence tagging model of our
framework directly, similar to the decoding algorithm described in Section 3.1. Formally, we decode tag 𝑡𝑖 of 𝑥𝑖 as follows:

𝑡𝑖 = argmax
𝑡∈

𝑝(𝑡|𝑥𝑖,𝑡𝑎𝑔), (8)

where 𝑡𝑎𝑔 represents the token-based transition aware tagging model (see Section 3.2). As we will see in Section 4, this enhanced
tagging model outperforms the baseline model marginally.

While the predicted tags implicitly incorporate the knowledge of token-based transitions, we propose to explicitly combine the
predictions from the enhanced tagging model 𝑡𝑎𝑔 with those from the transition classifier 𝑟𝑒𝑙 at decoding time. We score the
potential tag 𝑡 of a token 𝑥𝑖, considering not only 𝑥𝑖 but also its prior token 𝑥𝑖−1 through the predicted transition 𝑟𝑖 in-between.

To be more specific, we jointly decode the tag 𝑡𝑖 of 𝑥𝑖 as follows:

𝑡𝑖 = argmax
𝑡∈

𝑆(𝑡|𝑥𝑖−1, 𝑥𝑖, 𝑡𝑖−1,𝑗𝑜𝑖𝑛𝑡), (9)

where 𝑆 denotes the scoring function that intakes the predicted transition between 𝑥𝑖−1 and 𝑥𝑖. Therefore, 𝑆(𝑡|𝑥𝑖−1, 𝑥𝑖, 𝑡𝑖−1,𝑗𝑜𝑖𝑛𝑡)
is computed as:

𝑆(𝑡|𝑥𝑖−1, 𝑥𝑖, 𝑡𝑖−1,𝑗𝑜𝑖𝑛𝑡) = 𝑆(𝑡|𝑥𝑖,𝑡𝑎𝑔) + 𝑆(𝑟̂𝑖|𝑥𝑖−1, 𝑥𝑖, 𝑡𝑖−1, 𝑡,𝑟𝑒𝑙)

= 𝑆(𝑡|𝑥𝑖,𝑡𝑎𝑔) + 1(𝑡𝑖−1 ∈ First(𝑟̂𝑖))𝑆(𝑟̂𝑖|𝑥𝑖, 𝑥𝑖−1,𝑟𝑒𝑙)
1
2 ⋅ 1(𝑡 ∈ Second(𝑟̂𝑖))𝑆(𝑟̂𝑖|𝑥𝑖, 𝑥𝑖−1,𝑟𝑒𝑙)

1
2

= 𝑆(𝑡|𝑥𝑖,𝑡𝑎𝑔) + 1(𝑡𝑖−1 ∈ First(𝑟̂𝑖)) ⋅ 1(𝑡 ∈ Second(𝑟̂𝑖)) ⋅ 𝑆(𝑟̂𝑖|𝑥𝑖, 𝑥𝑖−1,𝑟𝑒𝑙),

(10)

where 𝑆 refers to the probability score, 1 denotes the indicator function, First(𝑟) represents a set of tags consisting of the distinct
first elements of all tag pairs mapped from 𝑟 according to Table 2, and Second operates like First except that Second collects the
second elements. For example, Inter can be mapped into two kinds of tag pairs (B, B) and (B, I), then First(𝐼𝑛𝑡𝑒𝑟) is the set {B} and
Second(𝐼𝑛𝑡𝑒𝑟) is the set {B, I}. Note that, 𝑟̂𝑖 in Eq. (10) is the optimal transition relation predicted by 𝑡𝑎𝑔 which is computed as:

𝑟̂𝑖 = argmax 𝑝(𝑟𝑖|𝑥𝑖−1, 𝑥𝑖,𝑟𝑒𝑙). (11)
6
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Table 3
Dataset statistics.

Dataset Language #Examples #Multi-span examples

MSQA (Li et al., 2022) English 6536 6536
MSQAExp (Li et al., 2022) English 19,608 6536
CLEAN (ours) Chinese 9063 4204

Table 4
Proportion and examples of answer types in MSQA and CLEAN datasets.

4. Experiments

In this section, we compare TOAST with multiple strong baselines on multi-span question answering. We first introduce the
atasets and experimental setup, then show the experimental results and analysis for different models.

.1. Dataset description

We conduct the experiments on three RC datasets, including two English datasets, namely MultiSpanQA and its variant
ultiSpanQA (expand), as well as one Chinese dataset, namely CLEAN (ours). Table 3 shows an overview statistics of those datasets.
o examine the performance of different models on various question types, we categorize the samples into two types: description

and entity, based on the expected answer type. Table 4 illustrates the breakdown of these types along with an example for each
answer type class. Note that, MSQA is short for MultiSpanQA, and MSQA-Exp is short for the expansion of MultiSpanQA.

MultiSpanQA
MultiSpanQA (Li et al., 2022), a recently proposed dataset for multi-span question answering, consists of 6.5 K multi-span

xamples, where the questions are user queries issued to Google search engine and the contexts are extracted from English Wikipedia.

ultiSpanQA (expand)
MultiSpanQA(expand) (Li et al., 2022), an expanded variant of MultiSpanQA, intakes single-span and unanswerable questions,

nd consists of 19 K examples in total.

LEAN
We propose CLEAN harvesting from a Chinese online knowledge Q&A sharing platform (i.e., BaiduZhidao), which consists of 9063

xamples in total, including over 4.2K multi-span examples. CLEAN contains 3077 distinct open-domain user questions, and each
uestion is annotated with a number of contexts from its associated long answers. To be more specific, we recruit three annotators
o extract answer spans from given contexts, and retained only those examples that achieved a Fleiss’ Kappa score greater than 0.5.
ur results indicate a high level of inner-annotator agreement, with a Fleiss’ Kappa score of 0.739, suggesting that the annotations
re consistent and reliable.

.2. Experimental setup

For all competing models and our models, we use the HuggingFace implementation of BERT𝑏𝑎𝑠𝑒 or RoBERTa𝑏𝑎𝑠𝑒 as the encoder
with 𝑚𝑎𝑥_𝑙𝑒𝑛 = 512. Specifically, for TOAST models, we initialize the learning rate to 3𝑒−5 and set the batch size to 32, then use
the BERTAdam optimizer with a weight decay of 0.01. Our approach does not involve tuning the parameters on the validation
set. Instead, we rely on using the model checkpoints obtained after 50 epochs. As for the other competing models, we follow the
configurations as originally reported in Lee et al. (2023), Li et al. (2022) and Segal et al. (2020) accordingly. Next, we introduce
the comparison models and the evaluation metrics in our experiments.
7
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4.2.1. Models under comparison
We introduce four competing models for multi-span answer extraction. These are SSE (Devlin, Chang, Lee, & Toutanova, 2019),

TASE (Segal et al., 2020), SNP-TASE (Li et al., 2022) and LIQUID (Lee et al., 2023).
SSE is a traditional single-span extraction model which formulates the answer extraction task by span labeling, i.e., identifying

n the context a span (a continuous string of text) that constitutes an answer. SSE builds a learnable linear layer upon the encoder
hich is used to predict the start and end position of the span. We adapt SSE for multi-span question answering, that considers the

irst span of a multi-span answer as the ground truth at the training step.
TASE is a tag-based span extraction model which identifies the multi-span answer by assigning a tag to every input token with

IO tagging scheme. Following Li et al. (2022), we build a strong baseline upon TASE, integrating with span number prediction
nd structure prediction, namely SNP-TASE.

The most recent framework, LIQUID (Lee et al., 2023), employs question generation as a form of data augmentation to enhance
nswer extraction performance, differing from the conventional emphasis on the exploration of model architectures.

According to the different strategies of decoding, we propose two models, 𝐓𝐎𝐀𝐒𝐓𝑡𝑎𝑔 and 𝐓𝐎𝐀𝐒𝐓𝑗𝑜𝑖𝑛𝑡, on the basis of our
framework, where TOAST is our joint learning framework, and the respective suffix designates the module from which predictions
are used at decoding step. 𝐓𝐎𝐀𝐒𝐓𝑡𝑎𝑔 predicts a tag for every token using the predictions of 𝑡𝑎𝑔 (see Eq. (8)), while 𝐓𝐎𝐀𝐒𝐓𝑗𝑜𝑖𝑛𝑡
leverages predictions from both 𝑡𝑎𝑔 and 𝑟𝑒𝑙 explicitly (see Eq. (9)).

4.2.2. Evaluation metrics
We evaluate the performance of our methods by automatic metrics and human evaluation.
Automatic Metrics. We use two automatic metrics for evaluation: Exact Match and F1 score.

• Exact Match. An exact match occurs when a predicted span fully matches one of the ground-truth answer spans. We calculate
the micro-average precision, recall and f1 score for the extract match metric.

• Overlap F1 score. Overlap F1 score is the macro-average f1 score, where the f1 score for each example is computed by treating
the prediction and gold as a bag of tokens.

The exact match shows the quality of predictions straightforwardly. However, counting the number of exact matches makes the
score discrete and coarse. Besides, it penalizes the partial matched prediction too much. The overlap F1 score considers the overlap
between the prediction and gold and thus can be used as a complementary metric to the exact match metric.

Human Evaluation. We randomly select 50 samples from each dataset and average the scores of two human annotators who are
proficient in English and Chinese. We ask the annotators to score each sample under 3 span-level aspects (completeness, correctness
and distinctness) and the overall quality:

• Completeness is to measure the semantic completeness of a given predicted span. If the span expresses the meaning
completely, it will receive a high rate on the completeness.

• Correctness is to measure the content correctness of a given predicted span. If the span answers the user question correctly,
it will receive a high rate on the correctness.

• Distinctness is to measure the content distinctness of a given predicted span against other predictions. If the span distinguishes
from others semantically, it will receive a high rate on the distinctness.

• Overall is to measure the overall quality of the predictions from a model for each sample.

For a given sample, each aspect is judged as a five-scale scores, ranging from 1 (Poor) to 5 (Excellent) depending on its quality.
For each span-level aspect, we score every predicted span and then average the scores across all predicated spans for evaluation. In
addition, for each sample we use the averaged overall scores from three annotators to present the overall quality of the predictions
of that sample.

4.3. Experimental results and analysis

In this section, we compare TOAST with all competing models described above both quantitatively and qualitatively.

4.3.1. Comparison results
We evaluate our model as well as baselines (Section 4.2.1) on the development splits of four datasets (Section 4.1) using both

automatic metrics and human evaluation metrics (Section 4.2.2). The comparison results are shown in Table 5 (exact match), Table 6
(overlap) and Fig. 2 (human evaluation).

Tables 5 and 6 illustrate the performance comparison between the proposed models, TOAST𝑡𝑎𝑔 and TOAST𝑗𝑜𝑖𝑛𝑡, and several
strong baselines, including the previous state-of-the-art model LIQUID. These comparisons are conducted using both the BERT𝑏𝑎𝑠𝑒
and RoBERTa𝑏𝑎𝑠𝑒 encoders. Notably, TOAST𝑡𝑎𝑔 exhibits superior performance in EM F1 across all three datasets. However, when
employing the BERT𝑏𝑎𝑠𝑒 encoder on the MSQA dataset, TOAST𝑡𝑎𝑔 demonstrates slightly lower performance in overlapped F1
compared to LIQUID. Importantly, the performance of TOAST𝑗𝑜𝑖𝑛𝑡 consistently outperforms LIQUID on all three datasets, irrespective
f the encoder setting. These results demonstrate the effectiveness of our proposed framework, as well as the of the joint decoding
trategy.

To be more specific, Table 5 shows the comparisons of exact match scores among all competing models. We can see that our
roposed framework, TOAST, consistently outperforms all other baselines across multiple multi-span question answering datasets.
8
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Table 5
The exact match results for all competing models, including micro-average precision (P), recall (R) and f1 score (F1).

MSQA MSQA-Exp CLEAN

P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)
[

BERT𝑏𝑎𝑠𝑒
]

SSE 52.53 17.95 26.76 32.21 19.61 24.38 22.02 21.19 21.60
TASE 54.16 63.63 58.52 51.01 59.12 54.77 28.73 49.39 36.33
SNP-TASE 58.12 60.50 59.28 58.32 60.34 59.31 – – –
LIQUID 55.67 66.24 60.50 55.56 61.49 58.37 41.04 47.95 44.23
TOAST𝑡𝑎𝑔 60.10 66.61 63.19 59.47 61.98 60.70 57.95 62.31 60.05
TOAST𝑗𝑜𝑖𝑛𝑡 60.55 66.82 63.53 60.97 65.57 63.19 58.48 62.64 60.49
[

RoBERTa𝑏𝑎𝑠𝑒
]

SSE 55.13 18.84 28.08 33.18 20.20 25.12 23.41 22.74 23.07
TASE 63.91 69.13 66.42 64.17 68.20 66.12 33.62 51.05 40.54
SNP-TASE 61.43 67.30 64.23 32.85 22.41 26.64 – – –
LIQUID 66.14 72.16 69.02 63.80 66.21 64.98 47.75 56.20 51.63
TOAST𝑡𝑎𝑔 68.15 73.57 70.76 66.90 68.23 67.56 61.04 64.32 62.64
TOAST𝑗𝑜𝑖𝑛𝑡 68.61 73.89 71.15 68.41 69.01 68.71 61.86 64.52 63.16

Table 6
The overlapped results for all competing models, including macro-average precision (P), recall (R) and f1 score (F1).

MSQA MSQA-Exp CLEAN

P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)
[

BERT𝑏𝑎𝑠𝑒
]

SSE 72.44 48.05 57.77 46.23 42.02 44.03 65.90 67.19 66.54
TASE 77.34 77.25 77.30 70.39 70.03 70.21 67.48 74.02 70.60
SNP-TASE 79.56 73.23 73.23 74.05 68.06 70.47 – – –
LIQUID 78.60 79.80 79.20 72.65 71.91 72.29 70.91 67.82 69.33
TOAST𝑡𝑎𝑔 79.48 78.78 79.12 73.47 71.37 72.40 82.32 79.41 80.84
TOAST𝑗𝑜𝑖𝑛𝑡 79.88 79.72 79.80 78.49 76.87 77.65 82.16 79.83 80.98
[

RoBERTa𝑏𝑎𝑠𝑒
]

SSE 75.65 49.25 59.66 48.53 43.48 45.87 66.24 67.25 66.74
TASE 82.56 81.73 82.14 78.94 78.81 78.88 70.81 75.68 73.16
SNP-TASE 80.72 79.83 80.27 47.79 27.10 34.59 – – –
LIQUID 80.90 81.50 81.20 78.31 76.14 77.21 75.60 74.96 75.28
TOAST𝑡𝑎𝑔 83.76 84.27 84.01 79.64 77.72 78.67 83.77 80.58 82.15
TOAST𝑗𝑜𝑖𝑛𝑡 84.06 84.40 84.23 80.65 78.47 79.54 83.81 80.79 82.27

Backed by BERT𝑏𝑎𝑠𝑒, TOAST𝑡𝑎𝑔 achieves EM F1 scores of 63.19 and, 60.70 and 60.05 on the datasets of MSQA, MSQA-Exp and
CLEAN, respectively. Moreover, when equipped with the joint decoding strategy, TOAST𝑗𝑜𝑖𝑛𝑡 achieves even higher EM F1 scores of
63.53 and, 63.19 and 60.49 on the same datasets. These results showcase substantial improvements over the previous state-of-the-art
model, LIQUID, with EM F1 score enhancements ranging from 3.03 to 16.26 across various datasets. Additionally, when utilizing
RoBERTa𝑏𝑎𝑠𝑒 instead of BERT𝑏𝑎𝑠𝑒, TOAST𝑗𝑜𝑖𝑛𝑡 achieves EM F1 scores of 71.15, 68.71 and 63.16 on the respective datasets. These
cores represent EM F1 improvements of 7.62, 5.52 and 2.67 compared to the previous setup.

The overlapped F1 results shown in Table 6 demonstrate similar trends to the EM F1 results. In comparison to the state-
f-the-art (SOTA) model LIQUID, TOAST𝑗𝑜𝑖𝑛𝑡 achieves improvements in overlapped F1 scores. Specifically, when using BERT𝑏𝑎𝑠𝑒,
he improvements are 0.6, 5.36, 11.65 on the MSQA, MSQA-Exp and CLEAN datasets, respectively. Similarly, when employing
oBERTa𝑏𝑎𝑠𝑒, the improvements of 3.03, 2.33, and 6.99 are observed on the same datasets. When augmenting TOAST with

oint decoding, we observed further performance improvements on both BERT-based and RoBERTa-based encoders. This outcome
ighlights the effectiveness of the joint decoding strategy, which explicitly combines predictions from multitask modules. Moreover,
ur proposed model demonstrates robustness in effectively generalizing across different datasets without requiring hyperparameter
e-tuning. In contrast, SNP-TASE faces challenge in achieving such generalization. While SNP-TASE demonstrates satisfactory
erformance when utilizing the RoBERTa𝑏𝑎𝑠𝑒 encoder on MSQA dataset, its effectiveness significantly declines when transitioning to
SQA-Exp dataset with the same hyperparameter configuration. Specifically, SNP-TASE achieves an EM F1 score of approximately

7, which is considerably lower compared to other competing models. These results suggest the potential need for hyperparameter
e-tuning when applying the SNP-TASE model to different datasets. To ensure a fair comparison with other competing models that
id not undergo this re-tuning process, we report the raw results of the SNP-TASE model without any adjustments.

In addition, Fig. 2 presents the comparison results of human evaluation on the overall quality of the complete answer, as well as
hree aspects at the span-level: completeness, correctness and distinctness. Specifically, Figs. 2(a) and 2(b) illustrate the comparisons
n the MSQA dataset using BERT𝑏𝑎𝑠𝑒 and RoBERTa𝑏𝑎𝑠𝑒, respectively. Similarly, Figs. 2(c) and 2(d) depict the comparisons on the
LEAN dataset. As shown in Fig. 2, the competing models demonstrate superior performance in terms of completeness and distinctness
hen extracting spans from the MSQA dataset compared to the CLEAN dataset. This observation can be attributed to the prevalence
9
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Fig. 2. Human evaluations on MSQA and CLEAN datasets.

of entity-type questions in the MSQA dataset (see Table 4), which are typically shorter and relatively easier to extract completely
using tagging models.

Our proposed models, TOAST𝑡𝑎𝑔 and TOAST𝑗𝑜𝑖𝑛𝑡, demonstrate an overall superior performance in the human evaluation.
Specifically, concerning the MSQA dataset, TOAST outperforms the strong baselines TASE and LIQUID in terms of the span
correctness and the overall answer quality (see Figs. 2(a) and 2(b)). However, it shows a slight decline in the completeness and
distinctiveness aspects of spans when using RoBERTa𝑏𝑎𝑠𝑒 (see Fig. 2(b)). We observe that the LIQUID model tends to extract keywords
from reference spans of the description type, leading to the fragmentation of answer spans into multiple shorter spans, such as single-
word nouns. While these shorter spans are more likely to achieve enhanced completeness and distinctiveness at the span level, but
this does not necessarily imply that LIQUID is more effective. In fact, TOAST𝑗𝑜𝑖𝑛𝑡 consistently outperforms them in terms of span
correctness and the overall quality. On the other hand, in the comparison of different models on the CLEAN dataset, the TOAST
models demonstrate marginal improvements across all aspects compared to the competing models. Specifically, the TOAST𝑗𝑜𝑖𝑛𝑡 model
using RoBERTa𝑏𝑎𝑠𝑒 achieves the highest overall score of 4.34 (ranging from 1 to 5), representing improvements of 0.56 and 0.42 over
he TASE and LIQUID models, respectively. Similarly, the TOAST𝑗𝑜𝑖𝑛𝑡 model using BERT𝑏𝑎𝑠𝑒 achieves an overall score of 4.3 which
emonstrates improvements of 0.46 over both the TASE and LIQUID models. At the span level, TOAST𝑗𝑜𝑖𝑛𝑡 using RoBERTa𝑏𝑎𝑠𝑒 exhibit
nhancements of 0.64, 0.52, and 0.54 scores of in terms of completeness, distinctness and correctness, respectively. Additionally,
OAST𝑗𝑜𝑖𝑛𝑡 using BERT𝑏𝑎𝑠𝑒 demonstrates improvements of 0.26, 0.2, and 0.38 scores in these respective aspects.

.3.2. Case studies
Next, we perform case studies to examine the impact of our proposed methods on answer extraction. The case studies utilize

unning examples from the MSQA and CLEAN datasets, which are presented in Tables 7 and 8, respectively. In the context, the gold
nswer spans are annotated in blue color to facilitate identification.

In Table 7, the first example inquires about the proximal attachment of the flexor carpi ulnaris. TASE and LIQUID primarily
ocus on the flexion and adduction functions of the flexor carpi ulnaris muscle. In contrast, TOAST models accurately identify that
he muscle originates from the humeral and ulnar heads, which are its true proximal attachments. The second example explores the
revalent music styles during the Middle Ages. TASE and LIQUID mistakenly categorize the style of composers (e.g. Baroque) as
usic styles, whereas TOAST models correctly identify all popular music styles. These cases exemplify the effectiveness of TOAST

n comprehending the query intention and semantics of the associated context. The third example, which seeks to determine the
10

uration of the Milky Way’s rotation, presents a failure case for TOAST. The given context introduces the concept of a galactic
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Table 7
The case studies from the MSQA dataset.

Example Model Extracted answer

Question: what is the proximal attachment of the flexor carpi ulnaris in
humans
Context: The flexor carpi ulnaris muscle (or FCU) is a muscle of the human
forearm that acts to flex and adduct (medial deviation) the hand. The flexor
carpi ulnaris muscle arises from two heads, the humeral and ulnar heads,
which are connected by a tendinous arch beneath which the ulnar nerve and
artery pass.
Gold answer: [‘‘humeral’’, ‘‘ulnar’’]

SSE [‘‘humeral and ulnar, connected by a tendinous arch’’]

TASE [‘‘medial deviation’’, ‘‘the hand’’]

LIQUID [‘‘flex’’, ‘‘medial deviation’’, ‘‘the hand’’, ‘‘tendinous’’]

TOAST𝑡𝑎𝑔 [‘‘hand’’, ‘‘humeral’’, ‘‘ulnar’’]

TOAST𝑗𝑜𝑖𝑛𝑡 [‘‘humeral’’, ‘‘ulnar’’]

Question: popular styles of music in the middle ages
Context: Medieval music consists of songs , instrumental pieces ... Medieval
music was an era of Western music, including liturgical music (also known as
sacred) used for the church, and secular music, non-religious music. Medieval
music includes solely vocal music, such as Gregorian chant and choral music
(music for a group of singers), solely instrumental music ... practice era , a
period of shared music writing practices ...
Gold answer: [‘‘liturgical music’’, ‘‘secular music’’, ‘‘Gregorian chant’’, ‘‘choral
music’’]

SSE [‘‘Gregorian chant and choral music’’]

TASE [‘‘secular music’’, ‘‘Gregorian chant’’, ‘‘choral music’’,
‘‘Baroque’’, ‘‘Classical music’’, ‘‘Romantic music’’]

LIQUID [‘‘Baroque’’, ‘‘Classical music’’, ‘‘Romantic’’]

TOAST𝑡𝑎𝑔 [‘‘liturgical music’’, ‘‘secular music’’, ‘‘Gregorian
chant’’, ‘‘choral music’’]

TOAST𝑗𝑜𝑖𝑛𝑡 [‘‘liturgical music’’, ‘‘secular music’’, ‘‘Gregorian
chant’’, ‘‘choral music’’]

Question: how long does it take for the milky way to rotate
Context: The galactic year, also known as a cosmic year, is the duration of
time required for the Sun to orbit once around the center of the Milky Way
Galaxy. Estimates of the length of one orbit range from 225 to 250 million
terrestrial years. The Solar System is traveling at an average speed of 828,000
km/h (230 km/s) or 514,000 mph (143 mi/s) within its trajectory around the
galactic center, a speed at which an object could circumnavigate the Earth ’s
equator in 2 min and 54 s; ...
Gold answer: Unanswerable

SSE [‘‘2 min and 54 s’’]

TASE [‘‘galactic year’’, ‘‘million’’, ‘‘years’’, ‘‘km/h’’, ‘‘514,000
mph’’, ‘‘2 min and 54 s’’]

LIQUID [‘‘828,000 km/h’’, ‘‘514,000 mph (143 mi/s)’’, ‘‘2 min
and 54 s’’]

TOAST𝑡𝑎𝑔 [‘‘828,000 km/h’’, ‘‘514,000 mph (143 mi/s)’’, ‘‘2 min
and 54 s’’]

TOAST𝑗𝑜𝑖𝑛𝑡 [‘‘828,000 km/h’’, ‘‘514,000 mph (143 mi/s)’’, ‘‘2 min
and 54 s’’]

year as the time taken for the Sun to complete one orbit around the center of the Milky Way. However, the provided information is
insufficient to answer the question. Instead of refusing to answer, we observe that the TASE model extracts the concept of a ‘‘galactic
year’’, albeit with multiple broken spans. Both LIQUID and TOAST models extract information related to the traveling speed of the
Solar System and the time it takes to circumnavigate the Earth’s equator at this speed, which pertain to the Solar System rather
than the Milky Way. Thus, TOAST and other competing models may struggle to handle cases with intricate semantic relations.

Likewise, the examples in Table 8 from the CLEAN dataset demonstrate similar trends. TOAST models excel in accurately and
omprehensively extracting description answers from the given contexts. For instance, in the second example from Table 8, the
ASE model tends to fragment the description answer into multiple incomplete spans, whereas TOAST models capture the boundary

nformation of the long description span, thus precisely extracting the entire answer span. The running examples from both datasets
mphasize the effectiveness of the proposed model.

. Related work

In this section, we briefly summarize previous works that are relevant to extractive reading comprehension (RC) datasets and
arious modeling approaches employed for extractive RC tasks.

.1. Extractive RC datasets

.1.1. Single-span RC datasets
Most existing RC datasets, such as SQuAD (Rajpurkar et al., 2016), SQuAD2.0 (Rajpurkar et al., 2018), SearchQA (Dunn et al.,

017), HotpotQA (Yang et al., 2018), TriviaQA (Joshi, Choi, Weld, & Zettlemoyer, 2017) and QuAC (Choi et al., 2018), contain
nly single-span questions whose answers are limited to a single text span from the provided context, referred as single-span RC
atasets. SQuAD consists of passages from Wikipedia as contexts and associated questions whose answers are spans from the passage.
QuAD 2.0 expands SQuAD by adding some questions that are designed to be unanswerable. HotpotQA dataset extends the answer
ontext from single passage to multiple passages. Since the RC datasets like SQuAD or HotpotQA are built by having humans read
given context, write questions and choose a specific answer span, the annotators may tend to make use of words from the answer

ext which potentially makes their questions easier to answer. To address this concern, one possible solution is to create datasets
here questions are not specifically designed with a context in mind. The TriviaQA dataset consists of questions authored by trivia
nthusiasts, while the QuAC dataset prevents the annotators (who also serve as questioners) from seeing the full context. However,
ll of these RC datasets primarily focus on single-span questions, which does not align with the distribution of real-world user
uestions.
11



Information Processing and Management 61 (2024) 103678Z. Luo et al.

h
s
m
u
i
c
r
t
a
p
N

Table 8
The case studies from the CLEAN dataset.

5.1.2. Multi-span RC datasets
The complete answer to a real-world user question could consist of multiple text spans. Furthermore, a user question can even

ave multiple intents, where the answer to each intent is composed of one or more spans. We refer to the datasets focus on such multi-
pan questions as multi-span RC datasets. Natural Question (Kwiatkowski et al., 2019) and Quoref (Dasigi et al., 2019) both contain
ulti-span questions. The Natural Question dataset incorporates real anonymized queries to the Google search engine. Quoref is
sed to validate models with the ability to resolve co-reference among entities. However, the proportion of multi-span answers
n Natural Question and Quoref is relatively low, around 2% and 10% respectively. The DROP (Dua et al., 2019) dataset which
onsists of complex questions on history and football games, requires discrete reasoning over the content of contexts, including co-
eference resolution and arithmetic operations, such as addition, sorting and counting. Although the questions could be multi-span,
he answer spans are almost exclusively semantically homogeneous and related to numeric values. MASH-QA (Pang et al., 2019) is
domain-specific dataset that extends the answer space to general text types in the healthcare domain. Recently, Li et al. (2022)

ropose the MultiSpanQA dataset, which consists of open-domain multi-span questions. The MultiSpanQA dataset is derived from
atural Question, whose questions are real queries issued to the Google search engine. Each question is associated with a context
12
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extracted from a retrieved Wikipedia page. MultiSpanQA also has an expanded variant by introducing single-span and unanswerable
questions, namely MultiSpanQA (expand).

The above datasets are all in English. The TyDi QA dataset (Clark et al., 2020) offers question–answer pairs in 11 typologically
iverse languages, including Arabic, Bengali, Kiswahili, Russian and Thai. The various languages in the dataset bring up new
hallenges such as morphological variation and word segmentation. To address the scarcity of Arabic datasets for the RC task, the
RCD dataset (Malhas & Elsayed, 2022) provides valuable resources. Additionally, the CMQA dataset (Ju et al., 2022) introduces a
ew annotate scheme that labels both fine-grained answers and conditions as well as the hierarchical relations in-between. CMQA is
he first public multi-span QA dataset in Chinese, however it formulates a new task of conditional question answering. To ameliorate
he situation of the lack of Chinese multi-span RC datasets, we propose a Chinese multi-span question answering dataset (CLEAN),
hich consists of multi-span questions in open domain and supports to cast RC as answer extraction task.

.2. Neural models for RC

Research in reading comprehension grows rapidly, and many successful neural-based RC models have been proposed in this
rea. Typically, neural models (Pang et al., 2019; Wang & Jiang, 2017; Xiong, Zhong, & Socher, 2017) for RC are composed of two
omponents, a context encoder and an answer decoder. The context encoder is used to encode the information of questions, contexts
nd their interactions in-between. Then, the answer decoder aims to generate the answer texts based on outputs of the context
ncoder. To make the answer decoder compatible with the answer extraction task, Pointer Network (Vinyals, Fortunato, & Jaitly,
015) model has been adopted to copy tokens from the given contexts as answers (Kadlec, Schmid, Bajgar, & Kleindienst, 2016;
rischler et al., 2016). Wang and Jiang (2017) proposed a boundary model, which utilized Pointer Network to predict the start and
nd indices for an answer span. Seo, Kembhavi, Farhadi, and Hajishirzi (2017) proposed an alternative way for the implementation
f answer decoder, that built neural position classifiers upon the encoder outputs, predicting the start and end indices of the answer
pan in the context.

Recently, the RC models upgrade the context encoder using pre-trained language models (PrLMs) (Gu et al., 2021; Kenton &
outanova, 2019; Lee et al., 2020; Liu et al., 2019; Radford, Narasimhan, Salimans, Sutskever, et al., 2018) , benefiting from the

nvention of Transformer (Vaswani et al., 2017) blocks. Devlin et al. (2019) proposed a standard extractive model for single-span RC
hat utilizes BERT to encode inputs, then builds position classifiers to predict where the answer span starts and ends. However, the
nswer decoder, whether implemented with Pointer Network or position classifiers, predicts start and end position independently,
hus cannot distinguish the different answer spans properly. Zhu, Ahuja, Juan, Wei, and Reddy (2020) proposed MultiCo which
sed a contextualized sentence selection method to capture the relevance among multiple sentence-based answer spans in order to
orm an answer with multiple sentences. These models are not well adapted to multi-span RC which can be formulated as more
lexible task of multi-span extraction where each span can be a word, phrase, sentence or any continuous string of text.

Extracting a variable number of spans from an input text can be commonly cast as a sequence tagging problem. Segal et al.
2020) proposed using a sequence tagging model for multi-span extraction, which predicts whether each token is part of an
nswer. Yoon, Jackson, Lagerberg, and Kang (2022) employed a similar sequence tagging approach to address extractive question
nswering (Naseem, Dunn, Khushi, & Kim, 2022) in the biomedical domain. Li et al. (2022) also adopted the tagging model
rchitecture, integrating two sub-tasks: predicting the number of spans to extract and annotating the answer structure within their
roposed dataset to capture global information. ADRAV (Hu, Yang, Li, Sun, & Yang, 2023) proposed a dynamic routing and answer
oting method to further make full use of the hidden layer knowledge of pre-trained models. More recently, LIQUID (Lee et al.,
023) was introduced to automatically generate list-style QA pairs from unlabeled corpora. LIQUID extracted named entities from
he summarized text as candidate answers and incorporated synthetic data in the tagging model. These methods harness the extensive
actual knowledge embedded in powerful contextualized encoders (PrLMs) or synthesized data that resolves around named entities.
s a result, they have demonstrated promising performance in extracting multi-span answers, particularly for factoid questions where

he answers correspond entities. However, these methods do not take into account the information of span boundaries in terms of the
uestions, and thus have very limited capabilities of precisely drawing a description answer. Compared to these approaches, TOAST
ncorporates the semantic and syntactic information of span boundaries by explicitly modeling the implicit neighboring transitions
n-between the adjacent tokens or words, which benefits the span boundary identification.

. Implications

Our main aim in this study is to address the problem of multi-span question answering, that has widespread implications for real-
ife applications such as virtual assistants. Although existing reading comprehension (RC) datasets and models have demonstrated
ffectiveness in answering factoid questions, they encounter difficulties when it comes to handling the complexities inherent in
escriptive questions.

We propose the TOAST framework, which is designed for the extraction of multi-span answers, and complement it with a newly
reated RC dataset named CLEAN that encompasses a significant number of descriptive questions. In Section 4.3, we demonstrate
he effectiveness of the components integrated within TOAST. A key insight in the extraction of multi-span answers lies in the value
laced on boundary knowledge, particularly through token-based neighboring transitions. To capture this information, we employ
n auxiliary task that incorporates token-based transition knowledge, enabling us to jointly learn the sequence tagging task and the
ransition classification task. Additionally, we further demonstrate the usefulness of the joint decoding strategy in TOAST, which
ot only implicitly integrates neighboring transition knowledge but also explicitly combines predictions from the enhanced tagging
13
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7. Conclusion

In this paper, we propose a joint learning framework named TOAST, which specializes in token-based neighboring transitions
o capture the boundary information of answer spans through adjacent word relations for multi-span question answering. Our
pproach extracts high-quality multi-span answers and is applicable to both alphabet languages like English and logographic
anguages like Chinese. Furthermore, we introduce an open-domain Chinese multi-span question answering dataset, named CLEAN,
hat incorporates crafted long answers as contexts. CLEAN effectively bridges the semantic gap by leveraging insights from public
ontributors, addressing the limitation of existing datasets. Results show that TOAST is more effective than a number of other strong
aselines across three publicly available datasets.

. Limitations

Our proposed approach, TOAST, explores the inherent shifting structures of contexts, incorporating knowledge of span boundaries
hrough token-based transition awareness. However, in contrast to the previous SOTA model LIQUID, it does not utilize external
nowledge for answer span extraction. LIQUID improves its performance, particularly for entity-type answer extraction, by
ntegrating open-domain entity knowledge through the augmentation of entity-centric question–answer pairs. Figs. 2(a) and 2(b)
how that LIQUID slightly outperforms TOAST in the completeness and distinctiveness aspects of spans on the predominant
ntity-type question MSQA dataset, attributed to its training with augmented data enriched with entities.

TOAST uniformly addresses spans with varying lengths, be they long descriptive answer spans or shorter entity answer spans,
apturing semantic and syntactic shifts between contexts. Note that, such boundary knowledge proves more particularly beneficial
or extracting longer answer spans, where such answers are often retrieved as broken spans in other models. As shown in Tables 5–
, TOAST achieves substantial improvements on the CLEAN dataset, which is primarily composed of prevalent descriptive-type
uestions.
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